

A LABORATORY STUDY ON THE ENHANCED BIOREMEDIATION OF PYRENE IN SOIL USING ACTIVATED CARBON

AJANI AYOBAMI OLU

Department of Chemical Engineering, Biochemical Engineering and Biotechnology Laboratory, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

ABSTRACT

Contamination of the environment by petroleum products such as polycyclic aromatic hydrocarbons (PAHs) is inevitable due to oil production, transportation and distribution activities. The potentials of activated carbon as a bioremediation alternative for soils contaminated with pyrene which is a PAH was studied. The rate of biodegradation of pyrene was studied for a period of 28 days under laboratory condition. The result of the microbial counts for soils spiked with 200 mg/kg pyrene was a total heterotrophic bacteria (THB) count in soil amended with commercial activated carbon ranging from 2.97±0.22 to 7.03±0.24 x 10⁶ CFU/g. Unamended control soil had THB count ranging from 1.54±0.12 to 1.70±0.18 x 10⁶ CFU/g while THB count in unamended autoclaved control soil ranged from 1.15±0.02 to 1.21±0.01 x 10³ CFU/g. The count of total hydrocarbon-utilizing bacteria (THUB) in activated carbon amended soil ranged from 1.70± 0.11 to 5.10±0.18 x 10^5 CFU/g while unamended control soil had THUB ranging from 7.10±0.12 to 7.90±0.14 ×10⁴ CFU/g and THUB count in unamended autoclaved control soil ranged from 5.50±0.01 x 101 to 5.80±0.04 x 103 CFU/g. The percentage pyrene removal in activated carbon amended soil was 62.2%, the percentage pyrene removal in unamended control soil was 7.70% while the percentage pyrene removal in unamended autoclaved control soil was 2.80% after 28 days. Evaluation of the first order kinetic model resulted in biodegradation rate constant of 0.196 day⁻¹ and half-life of 3.54 days for activated carbon amendment of 30 g after 28 days of treatment while unamended control resulted in biodegradation rate constant of 0.012 day⁻¹ and half-life of 57.76 days and unamended autoclaved control resulted in biodegradation rate constant of 0.001 day⁻¹ and half-life of 69.31 days. The results suggest that activated carbon supplementation would be effective in the remediation of pyrene polluted soils.

KEYWORDS: PAH, Bioremediation, Biiodegradation, Pyrene, Bacteria, Activated Carbon, THB, THUB